Correlations between osteocalcin content, degree of mineralization, and mechanical properties of C. carpio rib bone.
نویسندگان
چکیده
Osteocalcin is one of the most abundant noncollagenous proteins in bone. It is strongly associated with the mineral phase of bone, and has long been associated as a marker of bone turnover. However, its relationship to bone composition, strength, and structure is unclear. Carp rib bone is an excellent model for the study, because osteocalcin represents almost 60% of the total extractable noncollagenous proteins found in it. Because of the abundance of osteocalcin relative to other extractable proteins, any changes in the properties of carp rib bone would be more likely influenced by the osteocalcin concentration. To test the hypotheses that the concentration of osteocalcin is reflected in other properties of bone, the correlations between the osteocalcin concentration and the mineral content, microstructural properties, and physical characteristics of the bone mineral crystals were determined utilizing radioimmunoassay (RIA), spectrophotometry, nanoindentation, and small-angle X-ray scattering (SAXS) techniques, respectively. Osteocalcin concentration was found to be correlated to the molar Ca/P ratio and inversely correlated to the elastic modulus and hardness in the longitudinal plane. This study provides evidence for a putative relationship between the concentration of osteocalcin and the microstructural mechanical properties of bone. Correlations were also found between the mechanical properties in the longitudinal plane and both the phosphate content and the molar Ca/P ratio. However, no relationships could be identified between osteocalcin concentration and several parameters of bone crystals, as determined by SAXS.
منابع مشابه
Porcine somatotropin and dietary lysine influence bone mineralization and mechanical properties of bones in finishing swine.
The femur, a rib, and a third metacarpal were collected from 108 barrows (initial weight = 57 kg) and analyzed to determine the effects of porcine somatotropin (pST) and dietary lysine on bone mineralization and mechanical properties. In Exp. 1, pigs were injected daily with 4 mg of pST and fed diets containing 1.0% Ca and .9% P and either .6, .8, 1.0, 1.2, or 1.4% lysine. Control pigs (placebo...
متن کاملThe effect of resistance training and date pollen extract on bone tissue density and osteoblast cell proliferation in young male rats
Extended Abstract 1.Introduction One of the tissues that is affected by physical activity is bone. Bone is one of the tissues that needs to receive mechanical load to have normal function as a key factor in strengthening bone mass (2). Evidence shows that the mechanical load resulting from physical activity activates a set of proteins involved in the process of osteoblast activation and inhib...
متن کاملThe Influence of Electromagnetic Radiation Generated by a Mobile Phone on the Skeletal System of Rats
The study was focused on the influence of electromagnetic field generated by mobile phone on the skeletal system of rats, assessed by measuring the macrometric parameters of bones, mechanical properties of long bones, calcium and phosphorus content in bones, and the concentration of osteogenesis (osteocalcin) and bone resorption (NTX, pyridinoline) markers in blood serum. The study was carried ...
متن کاملEffects of preexisting microdamage, collagen cross-links, degree of mineralization, age, and architecture on compressive mechanical properties of elderly human vertebral trabecular bone.
Previous studies have shown that the mechanical properties of trabecular bone are determined by bone volume fraction (BV/TV) and microarchitecture. The purpose of this study was to explore other possible determinants of the mechanical properties of vertebral trabecular bone, namely collagen cross-link content, microdamage, and mineralization. Trabecular bone cores were collected from human L2 v...
متن کاملComparison of structural, architectural and mechanical aspects of cellular and acellular bone in two teleost fish.
The histological diversity of the skeletal tissues of fishes is impressive compared with that of other vertebrate groups, yet our understanding of the functional consequences of this diversity is limited. In particular, although it has been known since the mid-1800s that a large number of fish species possess acellular bones, the mechanical advantages and consequences of this structural charact...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomedical materials research
دوره 54 4 شماره
صفحات -
تاریخ انتشار 2001